ΓΛΥΚΕΙΟΥ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΕΠΙΛΟΓΗΣ

ΑΠΑΝΤΗΣΕΙΣ

ΟΜΑΛΑ Α΄

Α.1. Σωστό
Α.2. Λάθος
Α.3. Λάθος
Α.4. Σωστό
Α.5. Σωστό
Α.6. Σωστό
Α.7. γ
Α.8. γ

ΟΜΑΛΑ Β΄

Β.1. α, β, γ. Η συμπεριφορά του καταναλωτή - Σχολικό βιβλίο, σελ. 28-29
Β.2. προσδιοριστικοί παράγοντες της προσφοράς - Σχολικό βιβλίο, σελ. 83-84
Β.3. α. Σχολικό βιβλίο, σελ 134
 β. Σχολικό βιβλίο, σελ. 166

ΟΜΑΛΑ Γ΄

Γ.1. Έτος 2003:
% ανεργίας = \frac{άνεργοι}{εργατικό δυναμικό} \cdot 100 \Rightarrow \frac{440000}{\text{εργατικό δυναμικό}} \cdot 100 \Rightarrow \text{εργατικό δυναμικό} = 4.400.000

Έτος 2004:
% ανεργίας = \frac{άνεργοι}{εργατικό δυναμικό} \Rightarrow 8 = \frac{\text{αριθμός ανέργων}}{4.400.000} \cdot 100 \Rightarrow \text{αριθμός ανέργων} = 352.000

Γ.2.

Έτος Ονομαστικό Α.Ε.Π. Δ.Τ.\textsubscript{(2003)} Ρ.Π. Α.Ε.Π.\textsubscript{σε σταθερές τιμές 2003
2003 72.800 \text{100} \Rightarrow 72.800
2004 77.780 \text{105} \Rightarrow 77.780 \Rightarrow \frac{105}{100} \Rightarrow 74.076

\text{Ρυθμός Πληθωρισμού} = \frac{\Delta T\textsubscript{2004} - \Delta T\textsubscript{2003}}{\Delta T\textsubscript{2003}} \cdot 100 \Rightarrow 5 = \frac{\Delta T\textsubscript{2004} - 100}{100} \cdot 100 \Rightarrow \text{⇒} \Delta T\textsubscript{2004} = 105

Τα θέματα προορίζονται για αποκλειστική χρήση της φροντιστηριακής μονάδας.
Πραγματική % μεταβολή Α.Ε.Π. 2003 - 2004 =

\[
\frac{\text{Α.Ε.Π.}^{2004} \text{ σε σταθερές τιμές 2003} - \text{Α.Ε.Π.}^{2003} \text{ σε σταθερές τιμές 2003}}{\text{Α.Ε.Π.}^{2003} \text{ σε σταθερές τιμές 2003}} \times 100 = \frac{74.076 - 72.800}{72.800} \times 100 = 1,75\%
\]

Γ.3.

η

Επαναληπτικά Θέματα ΟΕΦΕ 2006

Σ.Α.

Τα θέματα προορίζονται για αποκλειστική χρήση της φροντιστηριακής μονάδας

Για το 2004 Οικονομικά Ενεργός Πληθυσμός = \(\frac{3}{5} \) πληθυσμού = 4.400.000 = \(\frac{3}{5} \) πληθυσμού ⇒

⇒ πληθυσμός = 7.333.333

π. κ. πραγμ. Α.Ε.Π. 2004 = \frac{\text{πραγματικό Α.Ε.Π.}^{2004}}{\text{πληθυσμός}} = \frac{74076 \text{ εκ.}}{7333333} = 10101,27

ΩΜΑΔΑ Α′

<table>
<thead>
<tr>
<th>Τιμή</th>
<th>(Q_b)</th>
<th>(\Sigma \Delta)</th>
<th>(Q_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>25</td>
<td>1125</td>
<td>115</td>
</tr>
<tr>
<td>35</td>
<td>45</td>
<td>1575</td>
<td>90</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
<td>1625</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>85</td>
<td>1275</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>105</td>
<td>525</td>
<td>15</td>
</tr>
</tbody>
</table>

Για \(P = 45 \):

\[\Sigma \Delta = P \cdot Q_b = 45 \cdot 25 = 1125 \]

Πλεόνασμα προσφοράς = \(Q_s - Q_d \) ⇒ \(90 = Q_s - 25 \) ⇒ \(Q_s = 115 \)

Για \(P = 35 \):

\[\Sigma \Delta = P \cdot Q_d \Rightarrow 1575 = 35 \cdot Q_d \Rightarrow Q_d = \frac{1575}{35} \Rightarrow Q_d = 45 \]

Πλεόνασμα προσφοράς = \(Q_s - Q_d \) ⇒ \(45 = Q_s - 45 \) ⇒ \(Q_s = 90 \)

\[\Sigma \Delta = P \cdot Q_d \Rightarrow 1625 = P \cdot 65 \Rightarrow P = \frac{1625}{65} \Rightarrow P = 25 \]

\[Q_d = Q_s = 65 \]

Αφού Πλεόνασμα = Έλλειμμα = 0, άρα \(P = 25 \) και \(Q_s = 65 \) ⇒ Σημείο ισορροπίας Ι(65,25)

Για \(P = 15 \):

\[\Sigma \Delta = P \cdot Q_d \Rightarrow 1275 = 15 \cdot Q_d \Rightarrow Q_d = \frac{1275}{15} \Rightarrow Q_d = 85 \]

Έλλειμμα προσφοράς = \(Q_d - Q_s \) ⇒ \(45 = 85 - Q_s \) ⇒ \(Q_s = 40 \)

Για \(P = 5 \):

\[\Sigma \Delta = P \cdot Q_d = 5 \cdot 105 = 525 \]

Έλλειμμα προσφοράς = \(Q_d - Q_s \) ⇒ \(90 = 100 - Q_s \) ⇒ \(Q_s = 15 \)
α) \(Q_D = \alpha + \beta P \)

\[
\begin{align*}
25 = \alpha + 45\beta \quad & \quad 25 = \alpha - 90 \Rightarrow \alpha = 115 \\
45 = \alpha + 35\beta \quad & \quad 20 = -10\beta \Rightarrow \beta = -2
\end{align*}
\]

\(Q_S = \gamma + \delta P \)

\[
\begin{align*}
115 = \gamma + 45\delta \quad & \quad 115 = \gamma + 112.5 \Rightarrow \gamma = 2.5P \\
90 = \gamma + 35\delta \quad & \quad -25 = -10\delta \Rightarrow \delta = 2.5 \\
\end{align*}
\]

Αρα, \(Q_D = 115 - 2P \)

Αρα, \(Q_S = 2.5 + 2.5P \)

β) \(Q_D = Q_S \Rightarrow 115 - 2P = 2.5 + 2.5P \Rightarrow P_o = 25 \)

\(Q_o = 115 - 2 \cdot 25 \Rightarrow Q_o = 65 \)

Αυτό προκύπτει και από τη συμπλήρωση του πίνακα.

Δ.2. Για \(P_A = 15 < P_o = 25 \)

α) Η τιμή \(P_A \) ονομάζεται Ανώτατη Τιμή ή Διατίμηση και το κράτος την επιβάλλει στην αγορά του αγαθού \(x \), προκειμένου να προστατεύσει τους καταναλωτές.

β) Για \(P_A = 15 \) έχουμε: \(Q_D = 115 - 2 \cdot 15 = 85 \)

\(Q_S = 2.5 + 2.5 \cdot 15 = 45 \) \(Q_D > Q_S \), έλλειμμα προσφοράς = 85 - 40 = 45

Βλέπε πίνακα

γ) \(40 = 115 - 2P' \Rightarrow P' = 37.5 \)

δ) Καπέλο = \(P' - P_A = 37.5 - 15 = 22.5 \)

ε) Για \(P_A' = 5 \) έλλειμμα προσφοράς = 90

\(Q_S = 15 \)

\(\alpha = 15 \leq 115 - 2P'' \Rightarrow P'' = 50 \)

Καπέλο = \(P'' - P_A = 50 - 5 = 45 \)

Όσο μικρότερη είναι η Ανώτατη Τιμή, τόσο μεγαλύτερο το έλλειμμα, τόσο μεγαλύτερο το ύψος του πιθανού καπέλου και τόσο μεγαλύτερη η τιμή που είναι διατεθειμένοι οι καταναλωτές να πληρώσουν.

Δ.3. α) \(Q_{D'} = 2Q_D \Rightarrow Q_{D'} = 2 \cdot (115 - 2P) \Rightarrow Q_{D'} = 230 - 4P \)

\(Q_{S'} = 2Q_S \Rightarrow 230 - 4P = 2.5 + 2.5P \Rightarrow P = 35 \)

\(Q_o' = 230 - 4 \cdot 35 \Rightarrow Q_o' = 90 \)

Ι(90, 35)

β) % μεταβολή \(P = \frac{35 - 25}{25} \cdot 100 = 40\% \) αύξηση

% μεταβολή \(Q_o = \frac{90 - 65}{65} \cdot 100 \approx 38.5 \) αύξηση

Με σταθερή την προσφορά και αύξηση της ζήτησης θα έχουμε ↑ \(P_o \) και ↑ \(Q_o \).
γ) \[Q_D = 115 - 2P \]
\[Q_D' = 230 - 4P \]
Για \(P = 0 \) \(\Rightarrow \) \(Q_D = 115 \)
Για \(Q_D = 0 \) \(\Rightarrow \) \(P = 57,5 \)
Για \(Q_D' = 0 \) \(\Rightarrow \) \(P = 57,5 \)

\[Q_s = 2,5 + 2,5P \]
Για \(P = 0 \) \(\Rightarrow \) \(Q_s = 2,5 \)

δ) Για \(P = 35 \)
\[Q_D = 115 - 2 \cdot 35 = 45 \]
\[Q_D' = 90 \]
\%
\[\% \text{μεταβολή } Q_D = \frac{90 - 45}{45} \cdot 100 = 100\% \]
\%
\[\% \text{μεταβολή } \gamma = 100\% \]
\[E_\gamma = \frac{\% \text{μεταβολή } Q_D}{\% \text{μεταβολή } \gamma} = \frac{100\%}{100\%} = 1 \]