ΑΠΑΝΤΗΣΕΙΣ

ΟΜΑΔΑ Α

Α.1 Λάθος
Α.2 Σωστό
Α.3 Σωστό
Α.4 Σωστό
Α.5 Σωστό
Α.6 δ
Α.7 γ

ΟΜΑΔΑ Β

Κεφάλαιο 9, σελ. 167-168, Τα αίτια του πληθωρισμού – Στασιμοπληθωρισμός

ΟΜΑΔΑ Γ

Γ.1 Την \(E_{ω,ω} \) την υπολογίζουμε εκεί όπου \(W \) σταθερή. \(W \): ημερομίσθιο - τιμή παραγωγικού συντελεστή "εργασία".

Για \(W=1.000 \)

\[
E_{1α} = \frac{\Delta Q_s}{\Delta P} \left(\frac{P_A + P_γ}{Q_A + Q_γ} \right) = \frac{130 - 120}{15 - 10} \left(\frac{10 + 15}{120 + 130} \right) \Rightarrow E_{1α} = 0,2
\]

\[
E_{1α} = \frac{\Delta Q_s}{\Delta P} \left(\frac{P_γ + P_λ}{Q_γ + Q_λ} \right) = \frac{140 - 130}{20 - 15} \left(\frac{15 + 20}{130 + 140} \right) \Rightarrow E_{1α} = 0,25
\]

\[
E_{1α} = \frac{\Delta Q_s}{\Delta P} \left(\frac{P_λ + P_ω}{Q_λ + Q_ω} \right) = \frac{140 - 120}{20 - 19} \left(\frac{10 + 20}{120 + 140} \right) \Rightarrow E_{1α} = 0,23
\]

\[
E_{1α} = \frac{\Delta Q_s}{\Delta P} \left(\frac{P_ω + P_α}{Q_ω + Q_α} \right) = \frac{160 - 120}{30 - 10} \left(\frac{10 + 30}{120 + 160} \right) \Rightarrow E_{1α} = 0,28
\]

\[
E_{1α} = \frac{\Delta Q_s}{\Delta P} \left(\frac{P_α + P_β}{Q_α + Q_β} \right) = \frac{160 - 130}{30 - 15} \left(\frac{15 + 30}{130 + 160} \right) \Rightarrow E_{1α} = 0,31
\]

\[
E_{1α} = \frac{\Delta Q_s}{\Delta P} \left(\frac{P_β + P_γ}{Q_β + Q_γ} \right) = \frac{160 - 140}{30 - 20} \left(\frac{20 + 30}{140 + 160} \right) \Rightarrow E_{1α} = 0,33
\]
Γ. 2 α. Μπορεί να γίνει μία καμπύλη προσφοράς για W=1.000. (Οι προσδιοριστικοί παράγοντες της προσφοράς σταθεροί)

β. Αφού για W=1.000, ο λόγος \(\frac{\Delta Q_s}{\Delta P} \) είναι σταθερός, η συνάρτηση προσφοράς είναι γραμμική, της μορφής \(Q_s = \gamma + \delta P \).

\[A(120,10) \quad 120 = \gamma + \delta \cdot 10 \]
\[\Gamma(130,15) \quad 130 = \gamma + \delta \cdot 15 \]

\(10 = 58 \Rightarrow \delta = 2 \)

Αρα, \(Q_s=100+2P \).

γ. Για \(P=0, \quad Q_s=100 \)

Για \(Q_s=0, \quad P=-50 \)

<table>
<thead>
<tr>
<th>P</th>
<th>Q_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>130</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
</tr>
<tr>
<td>30</td>
<td>160</td>
</tr>
</tbody>
</table>

Γ. 3 \(Q_s=100+2P \)

\[E_s = \frac{\Delta Q_s}{\Delta P} \cdot \frac{P}{Q_s} \Rightarrow \frac{1}{2} = 2 \cdot \frac{P}{100+2P} \]

\(4P = 100 + 2P \Rightarrow 2P = 100 \Rightarrow P = 50 \)

\(Q_s = 100 + 2 \cdot 50 \Rightarrow Q_s = 200 \)

ΩΜΑΔΑ Δ

<table>
<thead>
<tr>
<th>L</th>
<th>Q</th>
<th>TC=FC+VC</th>
<th>VC=TC-FC</th>
<th>AVC = VC/Q</th>
<th>MC = (\frac{\Delta VC}{\Delta Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>40</td>
<td>40-10=30</td>
<td>30/5 = 6</td>
<td>(30 - 0) (5 - 0) = 6</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>50/10 = 5</td>
<td>(50 - 30) (10 - 5) = 4</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>110</td>
<td>100</td>
<td>100/20 = 5</td>
<td>(100 - 50) (20 - 10) = 5</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>410</td>
<td>400</td>
<td>400/50 = 8</td>
<td>(400 - 100) (50 - 20) = 10</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>1.160</td>
<td>1.150</td>
<td>1.150/100 = 11.5</td>
<td>(1.150 - 400) (100 - 50) = 15</td>
</tr>
</tbody>
</table>

Για \(Q=0, \quad VC=0 \) άρα \(FC=TC=10 \)
Πίνακας Προσφοράς

<table>
<thead>
<tr>
<th>P=MC ≥ AVC</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

Δ.2 α. $Q_D=\alpha+\beta P$

$-3 = \beta \cdot \frac{15}{25} \Rightarrow 15\beta = -75 \Rightarrow \beta = -5$

$25 = \alpha - 5 \cdot (15) \Rightarrow 25 = \alpha - 75 \Rightarrow \alpha = 100$

$Q_D=100-5P$

β.

<table>
<thead>
<tr>
<th>P</th>
<th>Qs</th>
<th>$Q_D=100-5P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20</td>
<td>100-5·5 = 75</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>100-5·10 = 50</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>100-5·15 = 25</td>
</tr>
</tbody>
</table>

$P_0=10$ $Q_D=Q_s=50$

γ.

$Q_D=100-5P$

Για $P=0$, $Q_D=100$

Για $Q_D=0$, $P=20$

Δ.3

<table>
<thead>
<tr>
<th>P</th>
<th>$Q_D=100-5P$</th>
<th>Συν. Δαπάνη=$P \cdot Q_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>100-5·8 = 60</td>
<td>8·60 = 480</td>
</tr>
<tr>
<td>13</td>
<td>100-5·13 = 35</td>
<td>13·35 = 455</td>
</tr>
</tbody>
</table>

%мет.ΣΔ = $\frac{455-480}{480} \cdot 100 = -5,2\%$

$E_{\text{τοξ}} = \frac{\Delta Q_D}{\Delta P} \cdot \frac{P_1 + P_2}{Q_1 + Q_2} = \frac{35-60}{13-8} \cdot \frac{8+13}{60+35} = -1,1$

$|E_{\text{τοξ}}| = 1,1 > 1$ αφα Ρ και ΣΔ αντίστροφη σχέση.
Δ.4 α. Για \(P_k = 15 \), \(Q_D = 25 \) και \(Q_s = 100 \)
Πλέονασμα προσφοράς: \(Q_s - Q_D = 100 - 25 = 75 \) μονάδες
Συνολικά έσοδα παραγωγών
i) από καταναλωτές: \(P_k \cdot Q_D = 15 \cdot 25 = 375 \)
ii) από κράτος: \(P_k \cdot (Q_s - Q_D) = 15 \cdot 75 = 1.125 \)
Σύνολο: \(P_k \cdot Q_s = 15 \cdot 100 = 1.500 \)

β. \(P_k \cdot Q_s = 1.500 \), T.C. = 1.160
Κέρδος=Συν. Έσοδα- T.C. = 1.500-1.160=340
\(P_k \cdot Q_s = 500 \), T.C. = 410
Κέρδος=500-410=90
\\%\(met\ k\)ερδών = \(\frac{340-90}{90} \cdot 100 = 277,7\% \)

Δ.5 α. Για \(P_A = 5 \), \(Q_D = 75 \) και \(Q_s = 20 \)
Έλλειμμα προσφοράς: \(Q_D - Q_s = 75 - 20 = 55 \) μονάδες

β. 20 = 100 - 5\(P' \) \(\Rightarrow P' = 16 \) €
καπέλο = \(\sigma - P_A = 16 - 5 = 11 € \)

γ. νόμιμα έσοδα: \(P_A \cdot Q_s = 5 \cdot 20 = 100 € \)
παράνομα έσοδα: \(P' \cdot Q_s = 16 \cdot 20 = 320 € \)