Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΑΝΤΗΣΕΙΣ

ΘΕΜΑ 1ο

A. Απόδειξη (βλ. σχολικό σελ.31)
B. α. ορισμός (βλ. σχολικό σελ.149)
 β. ορισμός (βλ. σχολικό σελ.66)
Γ. α. Λάθος
 β. Λάθος
 γ. Σωστό
 δ. Λάθος
 ε. Σωστό

ΘΕΜΑ 2

A. Πρέπει \(x^2 + 1 \geq 0 \), το οποίο ισχύει για κάθε \(x \in \mathbb{R} \) έτσι \(A = \mathbb{R} \)
B. α. \(f'(x) = \frac{\ln(x^2 + 1) + x + \sqrt{a + 15}}{x^2 + 1} = \frac{2x}{x^2 + 1} + 1 \neq \frac{x^2 + 2x}{x^2 + 1} = \frac{x^2 + 1}{x^2 + 1} \)
 β. \(\lim_{x \to 1} f'(x) = \lim_{x \to 1} \frac{x^2 + 1}{x^2 - x - 2} = \lim_{x \to 1} \frac{(x+1)^2}{(x-2)(x+1)} = \lim_{x \to 1} \frac{x+1}{x-2} = \frac{1+1}{-1-2} = 0 \)
 \(\gamma \). Έστω \(M(x_0, f(x_0)) \) το σημείο επαφής της ζητούμενης εφαπτόμενης με την \(C_\gamma \). Αφού \((\varepsilon)\) πρέπει: \(f'(x_0) = 1 \Rightarrow \frac{x_0^2 + 2x_0 + 1}{x_0^2 + 1} = 1 \Rightarrow x_0^2 + 2x_0 + 1 = x_0^2 + 1 \Rightarrow 2x_0 = 0 \Rightarrow x_0 = 0 \).

Aφού \(f(0) = \ln 1 + \sqrt{a + 15} = \sqrt{a + 15} \), το σημείο επαφής είναι \(M(0, \sqrt{a + 15}) \) Έτσι \(\varepsilon \) : \(y = 1 + \beta \) δηλαδή \((\varepsilon) : y = x + \beta \)
Ωμος Με \((\varepsilon) \Rightarrow \sqrt{a + 15} = 0 + \beta \Rightarrow \beta = \sqrt{a + 15} \) έτσι \((\varepsilon) : y = x + \sqrt{a + 15} \).

Δ. για \(x_1 = 0 \) \(\Rightarrow y_1 = \sqrt{a + 15} \)
 για \(x_2 = 1 \) \(\Rightarrow y_2 = 1 + \sqrt{a + 15} \)
 για \(x_3 = 9 \) \(\Rightarrow y_3 = 9 + \sqrt{a + 15} \)
 για \(x_4 = 10 \) \(\Rightarrow y_4 = 10 + \sqrt{a + 15} \)
Οι τιμές αυτές σε αύξουσα σειρά είναι:
\[\sqrt{a+15}, \sqrt{a+15+1}, \sqrt{a+15+9}, \sqrt{a+15+10} \]
\[\delta = \frac{\sqrt{a+15+1} + \sqrt{a+15+9} - 2\sqrt{a+15+10}}{2} = \sqrt{a+15+5} \]
Αφού \(\delta = 50 \Rightarrow \sqrt{a+15+5} = 50 \Rightarrow \sqrt{a+15} = 45 \Rightarrow a+15 = 2025 \Rightarrow a = 2010 \]

ΘΕΜΑ 3

Α. Το εμβαδό του χωρίου που ορίζεται από το πολύγωνο συχνότητας και τον οριζόντιο άξονα είναι ίσο με το μέγεθος του δείγματος \(v \), έτσι \(v = 50 \).

Β. Τα εμβαδά των ορθογωνίων είναι ίσα με τις αντίστοιχες συχνότητες.

<table>
<thead>
<tr>
<th>Κλάσεις ([-)</th>
<th>(x_i)</th>
<th>(v_i)</th>
<th>(f_i)</th>
<th>(f_i %)</th>
<th>(N_i)</th>
<th>(F_i)</th>
<th>(F %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>2</td>
<td>4</td>
<td>0,08</td>
<td>8</td>
<td>4</td>
<td>0,08</td>
<td>8</td>
</tr>
<tr>
<td>4 - 8</td>
<td>6</td>
<td>7</td>
<td>0,14</td>
<td>14</td>
<td>11</td>
<td>0,22</td>
<td>22</td>
</tr>
<tr>
<td>8 - 12</td>
<td>10</td>
<td>18</td>
<td>0,36</td>
<td>36</td>
<td>29</td>
<td>0,58</td>
<td>58</td>
</tr>
<tr>
<td>12 - 16</td>
<td>14</td>
<td>13</td>
<td>0,26</td>
<td>26</td>
<td>42</td>
<td>0,84</td>
<td>84</td>
</tr>
<tr>
<td>16 - 20</td>
<td>18</td>
<td>8</td>
<td>0,16</td>
<td>16</td>
<td>50</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td></td>
<td>(v \approx 50)</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Αφού \(v = 50 \Rightarrow N_v + v_2 = 50 \Rightarrow 6v_2 + 8 = 50 \Rightarrow 6v_2 = 42 \Rightarrow v_2 = 7 \)
\[
N_4 = 42 \Rightarrow 4 + 7 + 18 + v_4 = 42 \Rightarrow v_4 = 13
\]

Γ. α. Α: «ο μαθητής έχει βαθμό από 10 έως 17» τότε
\[
N(A) = \frac{1}{2}v_2 + v_3 + \frac{1}{4}v_5 = 9 + 13 + 2 = 24 \text{ οπότε}
\]
\[
P(A) = \frac{N(A)}{N(\Omega)} = \frac{24}{50} = 0,48 \text{ ή } 48\%
\]

Β: «ο μαθητής έχει βαθμό κάτω από 10 ή τουλάχιστον 16»
\[
N(B) = v_1 + v_2 + \frac{1}{2}v_3 + v_5 = 4 + 7 + 9 + 8 = 28 \text{ Έτσι}
\]
\[
P(B) = \frac{N(B)}{N(\Omega)} = \frac{28}{50} = 0,56 \text{ ή } 56\%
\]

ΘΕΜΑ 4

Α. Έχουμε: \(2P(2) = P(3) = P(6) = P(k) = \frac{P(\lambda)}{2} = \theta \in R \)
Αφού \(P(\lambda) = \frac{1}{2} \Rightarrow P(k) + P(\lambda) + P(\mu) = \frac{1}{2} \Rightarrow \theta + 2\theta + P(\mu) = \frac{1}{2} \Rightarrow P(\mu) = \frac{1}{2} - 3\theta \) (1)

Σημείωση: Τα θέματα προορίζονται για αποκλειστική χρήση της οροφοστηριακής μονάδας.
Ωμος \(P(\Omega) = 1 \Rightarrow P(2) + P(3) + P(6) + P(\kappa) + P(\lambda) + P(\mu) = 1 \Rightarrow \)

\[
\frac{\theta}{2} + 3\theta + \theta + 2\theta + \frac{1}{2} - 3\theta = 1 \Rightarrow \\
4\theta + \frac{\theta}{2} = \frac{3}{2} \Rightarrow \theta = \frac{1}{9}
\]

Έτσι: \(P(2) = \frac{1}{18}, P(3) = \frac{1}{3}, P(6) = \frac{1}{9}, P(\kappa) = \frac{1}{9}, P(\lambda) = \frac{2}{9}, P(\mu) = \frac{1}{6} \)

B. \(f'(x) = 3x^2 - 24x + 20 \)

Αφού η \((x) / (\eta) \Rightarrow f'(-1) = 48 \Rightarrow \lambda + 44 = 48 \Rightarrow \lambda = 4 \)

Έτσι \(f'(x) = 4x^2 - 24x + 20 \)

\(f'(x) = 0 \Rightarrow 4x^2 - 24x + 20 = 0 \Rightarrow x = 1, x = 5 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>-(\infty)</th>
<th>(\lambda)</th>
<th>5</th>
<th>+(\infty)</th>
</tr>
</thead>
</table>
| \(f'(x) \) | + | - | + | |}

Άρα \(\kappa = 1 \) και \(\mu = 5 \)
Έτσι \(\Omega = \{1,2,3,4,5,6\} \)

Γ. Πρέπει \(\{ \begin{align*}
2x - 3 & \geq 0 \\
\sqrt{2x - 3} - \frac{5}{2} & \neq 0
\end{align*} \Rightarrow \begin{align*}
x & \geq 3/2 \\
\sqrt{2x - 3} & \neq \frac{\sqrt{5}}{2} \\
2x - 3 & \neq 5
\end{align*} \Rightarrow \begin{align*}
x & \geq 3/2 \\
x & \neq 4
\end{align*} \)
και αφού \(x \in \Omega \) άρα: \(x = 2 \) ή \(x = 3 \) ή \(x = 5 \) ή \(x = 6 \)
Έτσι \(B = \{2,3,5,6\} \)

Δ. Οι 4 παρατηρήσεις είναι τα \(\frac{4}{160} = -\frac{1}{40} = 2.5\% \) του συνόλου των παρατηρήσεων.

Έτσι αφού \(\epsilon \) κανονική κατανομή πρέπει: \(\bar{x} + 2s = 20 \) \((1) \)

Ομος \(R = \frac{3}{4} \Rightarrow 6s = \frac{3}{4}x = 24s = 3\bar{x} \) \((2) \)

\((2) \Rightarrow 24s = 3(20 - 2s) \Rightarrow 24s = 60 - 6s \Rightarrow 30s = 60 \Rightarrow s = 2 \)

Έτσι από \((1) \Rightarrow x + 4 = 20 \Rightarrow x = 16 \)
Παρατηρούμε ότι: \(CV = \frac{s}{\bar{x}} = \frac{2}{16} = \frac{1}{8} > \frac{1}{10} \), έτσι το δείγμα δεν είναι ομοιογενές.

Προσθέτοντας τον ίδιο θετικό σταθερό αριθμό \(c \) σε όλες τις τιμές της μεταβλητής \(\epsilon \), \(s' = s = 2 \) και \(\bar{x}' = \bar{x} + c = 16 + c \).
Για να είναι ομοιογενες το νέο δείγμα τιμών πρέπει:

\(CV' \leq \frac{1}{10} \Rightarrow \frac{s'}{\bar{x}'} \leq \frac{1}{10} \Rightarrow \frac{2}{16 + c} \leq \frac{1}{10} \Rightarrow 20 \leq 16 + c \Rightarrow c \geq 4 \) και αφού \(c \in \Omega \) \(\epsilon \) έχει: \(c = 4 \) ή \(c = 5 \) ή \(c = 6 \)
Έτσι \(\Gamma = \{4,5,6\} \)
Ε. Έχουμε: \(A \cap \Gamma = \{4,5\} \)
\(B - \Gamma = \{2,3\} \)
\(A \cup \Gamma = \{1,4,5,6\} \)
\(B \cup A' = \{2,3,5,6\} \) αφού \(A' = \{2,3,6\} \)

Έτσι \(P(A \cap \Gamma) = P(4) + P(5) = \frac{2}{9} + \frac{1}{6} = \frac{7}{18} \)
\(P(B - \Gamma) = P(2) + P(3) = \frac{1}{18} + \frac{1}{3} = \frac{7}{18} \)
\(P(A \cup \Gamma) = P(1) + P(4) + P(5) + P(6) = \frac{1}{9} + \frac{2}{9} + \frac{1}{6} + \frac{1}{9} = \frac{11}{18} \)
\(P(B \cup A') = P(2) + P(3) + P(5) + P(6) = \frac{1}{18} + \frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \frac{12}{18} \)